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Crystals of Coa(AsO& were grown from the melt of a mixture of CosAsa07 and AszOs. The crystals are 
isostructural with Mg,(AsO& and are tetragonal with a = 6.858(2), c = 18.872(S) A, Z = 6, and space 
group 142d. A total of 1048 independent reflections were measured by diffractometer and used in the 
full-matrix refinement to a final R value of 0.069. The structure contains two distinct AsO groups. Two of 
the cobalt ions are octahedrally coordinated and a third occupies a 4 site with four short and four long 
Co-O distances. The crystal structure of Co3 (AsO& is not based on the continuous three-dimensional 
closest packing of oxygen atoms. Nevertheless the number of oxygen atoms per cubic centimeter is 
5.4 x lo”, which falls in the range of values for hexagonal and cubic closest packed structures. A better 
measure of the degree to which closest packing is achieved by a structure is suggested. It is based on an 
analysis of the polyhedra of oxygen atoms which surround each of the oxygen atoms in a structure and 
their relation to the polyhedra in ideally closest packed structures. In order to facilitate the analysis, 
polytopes of 1 l- and 12-vertex polyhedra were studied. A new decahexahedral 1 l-vertex polyhedron was 
found. 

Introduction 

The structures of several compounds of 
composition M3(X04)2 (where M is a 
divalent cation and X = P, As, or V) have 
been studied to date. The structures show a 
large variation in the packing of oxygen 
atoms and coordination of the cations and, 
despite the availability of a large body of 
information on cation-oxygen bond lengths 
and cation bonding tendencies, it is not 
possible to predict the structure of an 
unknown member of the series with any 
certainty. The structures of Mg,(VO& (1) 
and Zn3(V04)2 (2) are based on the cubic 
closest packing of oxygen atoms and are 
related to the spine1 structure (3). The Zn2+ 
and Mg2+ ions occupy the octahedral sites 

*Author to whom correspondence should be 
addressed. 

and the V atoms occupy tetrahedral sites. A 
polymorph of CO~(ASO& has been studied 
by Krishnamachari and Calvo (4). They 
describe the structure as based on the 
hexagonal closest packing of oxygen atoms 
in a manner related to the structure of 
olivine (5). 

The possibility that a particular compound 
might be based on a closest packed 
arrangement of oxygen atoms is dependent 
on the tendency of the cations to enter into 
octahedral coordination or tetrahedral 
coordination and the degree to which the 
M-O and X-O bonds approximate the ideal 
values for the octahedral and tetrahedral 
cavities in hexagonal and cubic closest 
packed arrangements of oxygen atoms. 
Therefore, Cu3(AsO& (6), with a large 
Jahn-Teller distortion, is not closest packed, 
but in Co,(AsO,), the Co*+ ions are more 
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likely to be octahedrally coordinated and the 
expected average Co-O distance of ca. 
2.13 A (7) is near the ideal value of 2.05 A 
for the octahedral sites in an undistorted 
closest packed lattice with an O-O contact 
distance of 2.9 A. In contrast, the average 
expected Ca-0 distance is 2.40 A or greater 
(7) and indeed the structure of Ca3(As04)2 is 
not closest packed. Using these arguments 
one would expect the structure of 
Mg3(As0J2 to also be closest packed, but 
this is not the case (8) and the aforemen- 
tioned criteria for closest packing are there- 
fore not in themselves adequate. 

Co3(As0& is also a member of the 
n Co0 * As205 series of compounds. Studies 
of the nCoO*AszOS system indicate that 
compounds corresponding to n = i, 1,2,3, 
and 6 can be prepared (9,10) and most of 
these structures have been determined. 
CoO-AszOS is structurally similar to 
PbSbzOe with a hexagonally closest packed 
arrangement of oxygen atoms (10). 
6Mg0.As205 (II) and 6C00*As205 (12) 
are isostructural and their oxygen atoms are 
cubic closest packed. 3C00*As205 (4) was 
found to be monoclinic with an approximate 
hexagonally closest packed arrangement of 
oxygen atoms. The Co and As atoms occupy 
the octahedral and tetrahedral sites, respec- 
tively. A similar packing was found in the 
structure of 3*84CoO*As205 (13). 

The compound reported here also has the 
stoichiometry of 3Co0.AsZOS but was pre- 
pared inadvertently from a melt of 
Co2AsZ07 and As205, in the process of 
attempting to prepare crystals of Co2As207 
itself from incorrectly labeled commercial 
starting materials. The existence of this 
phase has also been reported by Krish- 
namachari and Calvo (4). The presence of 
polymorphism in the nCoO.AszOS and 
M3(X04)2 series of compounds suggests 
that a knowledge of average M-O and 
X-O bond lengths will not be suficient 
to predict the structure of any unknown 
compound. 

Experimental 

The crystals of CO~(ASO~)~ were grown by 
Dr. E. Kostiner, University of Connecticut. 
They were prepared from the melt of a mix- 
ture of Co2As207 and As205 under nitrogen 
in a closed platinum crucible at 123O”C, held 
for 4 hr, and cooled at 20”C/hr to 750°C. The 
formation of these crystals can be explained 
by the reaction: 

3CozAs20, -+ 2CoJAs04) + Asz05. 

An approximately rectangular shaped 
crystal of dimensions (0.08 x 0.08 x 
0.10 mm) was mounted on a fiber. The crys- 
tals were found to be tetragonal with the 
systematic absences 

h+k+1#2n for (hkl) 

and 

2h+l#4n for (hhl). 

Therefore the space group is I4md or I82d. 
The cell dimensions are a = 6.858(2) A and 
c = 18.872(5) A. The space group Ia2d was 
chosen because of the similarity of the cell 
dimensions to those of Mg3(As0& (8). 
Twenty-five reflections with 20 > 60” were 
centered at both positive and negative 28 
and were used to calculate accurate cell 
dimensions. The integrated intensities of 
3500 reflections (28 < 100”) were obtained 
with a Picker FACS-I diffractometer using 
MO& radiation. The structure was then 
refined by the full-matrix least-squares 
method using the parameters of Mg,(AsOA)z 
as initial parameters. A total of 1048 unique 
reflections were used in the refinement after 
averaging over the symmetry equivalent 
reflections. The scattering factors were taken 
from Cromer and Mann (14). A series 
weighting scheme with o = (1.7346 - 
O.O0333(F,j + 0.000369)Fo12)-2 was used in 
the final cycles of least squares. The term in 
brackets is an approximation for g(IF,,l), 
calculated with the assumption that the best 
approximation for g(IF& is the average 
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value of 1 IF,\ - IF,1 1 in the range of lF,I. The TABLE II 

final agreement factors were R = 0.069 and FRACTIONALATOMICCOORDINATES"~ 
R, = 0.073. Table I, containing a list of 
observed and calculated structure factors, is Site 
available as supplementary material.’ The Atom symmetry x/a Ylb Z/C 

final positional and thermal parameters are co(l) 
listed in Table II. Co(2) 

8d 
8c 

2435 (2) 2500 1250 
0 0 2211(l) 

coi3+ 4b 0 0 5000 

Description of the Structure 

As noted earlier, Co3(AsO& is iso- 
structural with Mg3(As0& (8). A stereo- 
scopic view of the structure is given in Fig. 1 
(15). The oxygen atoms are represented 
either by the termination of stick bonds or 
the joining of two stick bonds at a vertex. 
When small volumes are viewed separately, 
the array of oxygen atoms appears 
hexagonally closest packed with the stack 
axes approximately parallel to the (301) 
family of directions. The deviations from 

FIG. 1. Stereoscopic view of the packing of tetragonal 
C03tAS04)2. 

’ See NAPS Document No. 03507 for 16 pages of 
supplementary material. Order from ASKS/NAPS c/o 
Microfiche Publications, P.O. Box 3513, Grand Central 
Station, New York, New York 10017. Remit in advance 
for each NAPS Accession number. Institutions and 
organizations may use purchase orders when ordering. 
However, there is a billing charge for this service. Make 
checks payable to Microfiche Publications. Photocopies 
are $5.00. Microfiche are $3.00. Outside of U.S. and 
Canada, postage is $3.00 for a photocopy or $1.50 for a 
fiche. 

As(l) 
As@) 
O(1) 
O(2) 
G(3) 

8d -3435 (2) 2500 1250 
4a 0 0 0 

16e 576 (11) 2072 (9) 435 (3) 
16e 4963 (11) 2898 (12) 1925 (3) 
16e 2208 (8) 5470 (9) 1016 (3) 

THERMALPARAMETERS'.'~ 

Atom Ull u22 u33 

Co(l) 65 (4) 74 (4) 63 (4) 
cm) 83 (5) 65 (5) 60 (4) 
co (3) 137 (22) Ull 162 (18) 
Ml) 63 (3) 63 (3) 58 (3) 
AS(~) 57 (6) Ull 51(4) 
O(l) 164 (23) 58 (16) 108 (18) 
O(2) 87 (19) 250 (31) 109 (17) 
O(3) 107 (21) 56 (15) 130 (19) 

u12 Ul3 u23 

0 0 -2 (2) 
-10) 0 0 

0 0 0 
0 0 -2 (7.) 
0 0 0 

-5 (8) -11 (9) -8 (8) 
-ll(ll) ll(l0) -46 (9) 

-7 (6) -36 (8) -12 (7) 

a x104. 
b Numbers in parentheses are estimated standard 

deviations. 
’ Site of half occupancy. 
d The temperature factor expression is 

exp(-2~2(a*zhzU1i+~ . -+2a*b*hkU,~+*~ *}. 

closest packing are such that discontinuities 
in stacking appear between equivalent areas 
in adjacent unit cells. In other words, the 
translational symmetry does not tessellate 
small local areas of closest packing in order 
to create continuous three-dimensional 
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closest packing. The coordination polyhedra 
present in the structure consist of two 
independent CoOd octahedra with C2(2) 
symmetry, two independent AsO tetra- 
hedra, one with C, symmetry and one with 
&(4) symmetry, and a Coos polyhedron 
with DZd symmetry which may be formed by 
capping the four faces of a DZd distorted 
tetrahedron with an outer tetrahedron and 
which is also known as the Hoard dodeca- 
hedron. The bond length to the inner tetra- 
hedron is 2.265(g) and to the outer, 
2.729(7) A. The tendency of Co’+ to assume 
eight coordination is well documented (16). 
In the present case only one-half of the Co’+ 
sites of the dodecahedra are occupied. 

The bonds and angles from all of the 
polyhedra are listed in Table III. The average 
Co-O distance in the octahedron around 
Co(l) is 2.092 A and for the octahedron 
around CO(~), 2.108 A. These bond lengths 
are slightly shorter than the averages for the 
three independent Coo6 octahedra in the 
monoclinic modification of Co3(As0J2 (4). 
Furthermore the spread of Co-O octahedral 
bond lengths here is 2.019 to 2.168 A. In the 
monoclinic form it is 1.991 to 2.292 A. 

In order to understand the packing of the 
structure, many approaches are possible, 
depending on which features are to be 
emphasized. In Mg,(AsO& Krishnamachari 
and Calvo (8) have chosen to emphasize the 
connectivity of the aforementioned poly- 
hedra. They separate the structure into 
sheets containing the vectors a + b and c and 
isolate edge sharing undulating strips of 
polyhedra within these sheets. It must be 
understood, however, that such a description 
is only a convenience in visualizing the 
structure because the amount of edge sharing 
between polyhedra in adjacent sheets is not 
significantly less than within the sheets. 

We may emphasize the fourfold symmetry 
of the structure by separating it into sheets 
parallel to the basal plane of the tetragonal 
unit cell. Our discussion is in terms of the 
same polyhedra used by Krishnamachari and 
Calvo (8) and illustrated in their Fig. 1. 

TABLE III 

BONDDISTANCES(&ANDANGLES(O)' 

Co(l)-O(l’.“) 2 x2.019(6) 
-0(2’.“) 2 x2.168(7) 
-0(3’.“) 2 x 2.090(6) 

CO(~)-O(1”~“) 2x2.085(6) 
-0(2”.“‘) 2 x 2.085(6) 
-0(3”“) 2 x2.154(5) 

CO(~)-0(2 ’ ’ VII viii xikxii) 4 x 2.265(g) 
~0(31X.X.XimI) 4 x 2.729(6) 

As(l)-0(2’.“‘) 2 x 1.703(6) 
-0(3”.“) 2 x 1.686(6) 

O(l’)-Co(l)-O(1”) 
-0(2”) 
-0(3’) 
-0(3”) 

0(2’)-Co(l)-O(2”) 
-0(3’) 
-0(3”) 

o(1’)-co(2)-o(2x’) 
-o(2x”) 
-0(3’) 
-0(3”) 

0(2”‘)-Co(2)-O(2”“) 
-0(3”) 

0(3’)-CO(~)-O(3”) 

0(2’“)-CO(~)-O(2’“‘) 
-00 xiiixiv 1 

-0(3’“) 
-0(3”) 
-0(3”‘) 

0(2’“‘)-CO(~)-O(3”“) 
-0(2 xiii xiv . ) 

0(3’“)-Co(3)-O(3”) 
0(3”)-c0(3)-0(3”3 
0(2’)-As(l)-O(2”) 

-0(3”) 
0(2”‘)-As(l)-O(3”) 
0(3”)-As(l)-O(3’) 
O(l’)-AS(~)-O(1”) 

-0(1iii,iv) 

O(l,;;)-AS(~)-O(l”‘.“) 
O(l”‘)-AS(~)-O(1”) 

101.7(3) 
92.2(3)x 2 
86.2(2)x 2 
88.4(2)x 2 
73.8(4) 
93.5(3) x 2 
93.3(3)x2 

105.0(3) x 2 
91.1(3)x2 
82.9(3)x 2 
81.7(3)x2 
87.5(4) 
90.8(3)X 2 
91.9(3) 

122.7(4) 
103.3(4)x 2 
162.5(3) 
73.7(3) 
76.0(3) 
64.4(3) 

103.3(4) 
90.7(3) 

119.6(3) 
99.7(5) 

112.7(3)x2 
105.0(3)x 2 
120.1(4) 
121.8(4) 
103.7(4)x 2 
103.7(4)x 2 
121.8(4) 

a Symmetry operators: i, x, y, .z ; ii, --x, -y. I ; iii, -y, x, 
-z;iv,y,-x,-r;v,-x,&+y,a-z;vi,x,$-y,$-z;vii, 
y, :+,,a+~; viii, -y, f-x, $+z; ix, $+x, $+y, f+z; x, 
+-x,5-y,t+z;xi,$- y,~+x,:;z:xii,i+y,t-x,i-z; 
xiii,i-x,y,$-r;xiv,&+x,- y,a-z;xv,f+y,x,t+z; 
xvi, 1-y. --x, f+ z. 
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Identical but displaced sheets of polyhedra 
sit approximately at z = 0, a, 1, and !. The 
sheets are square nets with repeat distance a 
and with Co(3)Os dodecahedra at the 
corners of the square net. These corners are 
joined in both directions by the octahedra 
around CO(~) which share polyhedral edges 
with two CO(~) dodecahedra each. At the 
center of the square of the net sits a tetra- 
hedron around AS(~), sharing one vertex 
with each of the four CO(~) octahedra sur- 
rounding it. 

The sheets are separated by straight 
double ribbons of polyhedra at z = i, $,s, and 
5. Each successive plane of ribbons is rotated 
through 90”. The basic unit of the ribbons is 
an As(l) tetrahedron and a Co(l) octa- 
hedron sharing a common edge. This pair of 
polyhedra are joined to the next pair along 
the double ribbon by corner sharing with the 
polyhedron of opposite type in the next unit 
along the ribbon. Adjacent ribbons do not 
share either edges or corners. Each As(l) 
tetrahedron shares an edge with a CO(~) 
dodecahedron in the sheet above and with 
one in the sheet below the plane of the 
ribbon. The Co(l) octahedron shares an edge 
with a CO(~) dodecahedron above and below 
it and also with a CO(~) octahedron above 
and below it. 

The unusual Co-O bonds to the Co’+ 
cation in the half-occupied CO(~) site were 
used in a bond strength calculation using the 
method of Brown and Wu (17). Each bond is 
assigned a “bond strength” in valence units 
(v.u.) given by s = (R/RJN and the sum of 
bond strengths should approach the valence 
of the ion. Using values for R1 and N given 
by Brown and Wu, the four oxygen atoms at 
a distance of 2.265 A from the CO(~) ion 
contribute a total of 0.88 V.U. The four at 
2.729 A contribute 0.31 V.U. for a total of 
1.19 V.U. The site is half occupied by a 
divalent cation and one might therefore 
expect a value of 1 .OO vu. In order to test the 
applicability of the method to this structure 
we also calculated the sum of bond strengths 
for the other cations. We find for Co(l), 

CO(~), As(l), and AS(~) the values 2.08, 
1.97, 4.80, and 4.91 v.u., respectively, in 
better agreement with the formal charges on 
these cations. 

Figure 2 shows that the thermal ellipsoids 
of the O(2) and O(3) atoms are highly aniso- 
tropic and that the long axes of the ellipsoids 
are along the direction of the CO(~)-0 
bonds. The 0 atom position is then assumed 
to be the average of two positions, one cor- 
responding to an occupied CO(~) site and one 
corresponding to an unoccupied CO(~) site. 
The contribution of the CO(~)-O(3) bond 
strength (0.08 v.u.). based on this average 
O(3) position gives a total value of 1.95 V.U. 
for the O(3) atom, in good agreement with 
the values of 1.99 and 2.01 V.U. for the atoms 
O(1) and O(2). We conclude therefore that it 
is not correct to expect a total bond strength 
value for a partially occupied site equal to the 
average valency of the site. 

Oxygen Packing 

The calculated density of tetragonal 
Co3(As0& is 5.10 g crnb3 and the calculated 
density of monoclinic Co3(As0& is 
5.19 g cmw3. A difference of less than 2% is 
rather surprising considering the fact that 
one form appears to be closest packed and 
the other is clearly not. Another indicator of 
closest packing that might be considered is 

FIG. 2. Thermal ellipsoids of the oxygen atoms 
around the partially occupied site of the CO(~) atom. 
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the number of oxygen atoms per cm3. 
Assuming an oxygen closest packing 
radius of 1.45 A, ideal hexagonal and cubic 
closest packing contain 5.8 x 10” oxygen 
atoms per cm3. The values for tetragonal 
Co3(As0&, monoclinic Co3(AsZ0& (4), 
C06.95AS3.62016 (13),and6~~0’As205(11) 
are 5.4,5.5,5.2, and 5.5 x 10 oxygen atoms 
per cm3, respectively. The latter three 
compounds are identified as being closest 
packed. It would appear, then, that a better 
indicator is needed. An analysis of the pack- 
ing in terms of contact distances between 
oxygen atoms suggests itself but we are then 
left with the problem of deciding which pairs 
of oxygen atoms are in contact and which are 
not. 

We therefore undertook to examine the 
geometry of the polyhedron of oxygen atoms 
which surrounds each individual oxygen 
atom in high density oxides. In such an 
approach, the effect of the cations is mani- 
fested only through the perturbations of the 
idealized closest packing of the oxygen atoms 
caused by their presence in the lattice. 

A practical method of characterizing 
polyhedra in terms of polyhedral edge angles 
was first suggested by Porai-Koshits and 
Aslanov (18). The method has been dis- 
cussed by several authors and has recently 
been expanded to include 9- and lo-vertex 
polyhedra (19). The oxygen polyhedra in 
hexagonal and cubic closest packed struc- 
tures have 12 vertices. In non-closest-packed 
structures we might expect polyhedra with 
less than 12 vertices. It is therefore necessary 
to first extend this analysis to include 1 l- and 
12- vertex polyhedra. 

The results obtained probably have 
limited application outside of the present 
context because coordination numbers 11 
and 12 are not common in discreet polyhedra 
and furthermore, 1 l-vertex polyhedra are 
particularly unstable toward the formation of 
the 12-vertex icosahedron. Therefore a brief 
discussion of 1 l- and 12- vertex polyhedra is 
presented here. 

In lattice structures and alloys, the 
requirements of tessellation produce a large 
variety of low-symmetry, high-coordination 
polyhedra. A number of such polyhedra have 
recently been discussed by Bhandary and 
Girgis (20). They find two 1 l- vertex poly- 
hedra, the pentacapped trigonal prism (PTP) 
with symmetry D3h and an “11 verticon” 
with symmetry C,. An 1 l-vertex polyhedron 
is clearly created by removing a vertex from 
an icosahedron, i.e., the monocapped 
pentagonal antiprism (MPAP), with sym- 
metry CS,. In order to establish the 
geometry of reference polyhedra (polytopes) 
we have used the method of Claxton and 
Benson (21), which varies the geometry of 
the reference polyhedron in order to mini- 
mize the energy of repulsion between ligands 
at the vertices of the polyhedron, written as 
CR,” where Rij is the separation of the 
ligands i and j. An important feature of the 
method is that symmetry once achieved in 
the variable polyhedron is never lost. It was 
therefore of considerable interest that 
wherever a low symmetry or random 
placement of vertices was used as a starting 
point (sometimes unintentionally) a new 1 l- 
vertex polyhedron of symmetry CZ” was 
nearly always generated. In a few cases the 
threefold symmetry of the PTP became 
“locked in” and the PTP was generated. 

The new 1 l-vertex polyhedron has 16 tri- 
angular faces and we shall therefore refer to 
it as the decahexadron (DHH). Table IV lists 

TABLE IV 

RELATIVE REPULSIVE ENERGIES OF ll-VERTEX 
POLYHEDRA 

n MPAP DHH PTP 

1 121.844 121.805 121.865 
4 68.468 68.258 69.027 
6 55.712 55.684 57.204 
7 51.558 51.728 53.672 
8 48.168 48.592 50.982 
9 45.277 45.996 48.843 

10 42.724 43.984 47.077 
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a measure of the energy of repulsion of the 
MPAP, DHH, and PTP for several values of 
the exponent IZ. The units are arbitrary and 
comparisons are valid only between poly- 
hedra of equal n. For values of n less than 7, 
the DHH is the energetically favorable 
polyhedron. The PTP is the superior poly- 
hedron for no values of II. Nevertheless, 
because of its high symmetry and its exis- 
tence in alloy structures it must be con- 
sidered as an important 11-vertex poly- 
hedron. The three 11-vertex polyhedra are 
shown in Fig. 3. 

The dihedral angles 6, between the pairs of 
planes forming each polyhedral edge, were 
calculated for all three polyhedra with a 
value of 6 assigned to the exponent n. The 
values of S and the lengths of the associated 
edge for a polyhedron inscribed within a unit 
sphere are given in Table V. The labeling of 

a 

b 

FIG. 3. Stereoscopic views of the (a) monocapped 
pentagonal antiprism (MPAP), (b) decahexahedron 
(DHH), and (c) pentacapped trigonal prism (PTP). 

TABLE V 

8 ANGLES AND EDGE LENGTHS FOR THE MPAP 
AND DHH WITHn= 6 

MPAP DHH 

Edge Length 6 (“I Length 

a 1.090 43.2 1.155 36.3 
b 1.090 43.2 1.057 48.6 

i 
1.075 45.2 1.057 48.6 
1.094 40.9 1.104 41.9 

f” 
1.090 43.2 1.104 41.9 
1.075 45.2 1.137 36.9 

g 1.094 40.9 1.137 36.9 
h 1.075 45.2 1.003 60.9 
i 0.988 76.1 1.003 60.9 
j 1.094 40.9 1.047 44.9 
k 1.094 40.9 1.321 27.5 
I 1.599 0 1.321 27.5 
m 0.988 76.1 0.995 61.4 
n 1.094 40.9 1.003 54.8 
0 0.988 76.1 1.003 54.8 

the edges of the MPAP and DHH is shown in 
Fig. 4. The connectivity of a polyhedron 
intermediate between the two polytopes is 
given in Fig. 5. In the DHH, the equivalent 
edges are the b and c edges, the d and e edges, 
the f and g edges, the h and i edges, the k and 1 
edges, and the n and o edges. In the MPAP, 
the a, b, and e edges are equivalent, as are the 
c, f, and h, the d, g, j, k, and n, and the i, m, 
and o edges. The 1 edges divide the 
pentagonal base of the MPAP into three 
triangles and have the value zero in the 
MPAP. They are therefore the most sensitive 
indicators of polyhedral type. 

We will not attempt to relate the connec- 
tivity of the PTP with that of the aforemen- 
tioned polytopes. However, we list here the S 
angles for the four independent sets of edges 
of the PTP. Referring to Fig. 3c, the values 
for A-B edges, A-C edges, B-B edges, and 
B-C edges are 71.5, 6.2, 44.9, and 53.6”, 
respectively. In order to relate the PTP to the 
more familiar tricapped triagonal prism 
(TTP) we observe that the addition of the two 
A vertices to the TTP removes the edges, 
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FIG. 4. Labeling of the edges of the (a) monocapped 
pentagonal antiprism and (b) the decahexahedron. 

FIG. 5. Schematic representation of the connectivity 
of a general 11-vertex polyhedron intermediate 
between the MPAP and DHH. 

b 

c 

FIG. 6. Stereoscopic views of the (a) icosahedron, 
(b) the cuboctahedron (COH), and (c) the twinned 
cuboctahedron (TCOH). 

B2-B3, B3-B4, B4-B2, B8-B9, B9-BlO, 
BlO-B8 which would exist in the TTP. 

The la-vertex polyhedron with maximum 
edge length in a unit sphere is the well- 
known regular polyhedron, the icosahedron. 
However, the icosahedron has fivefold 
symmetry and therefore does not pack well. 
Many structures exist which are based on 
icosahedra, particularly the higher borides 
(Z), but they are not based on the closest 
packing of atoms. The polyhedron of oxygen 
atoms surrounding each oxygen atom in 
cubic closest packed and hexagonal closest 
packed structures are the cuboctahedron 
(COH) and the twinned cuboctahedron 
(TCOH). The advantage of icosahedral 
geometry is illustrated by the fact that the 
relative repulsive energies of the icosa- 
hedron, COH, and TCOH, with a negative 
exponent of 6 in the repulsion potential, are 
70.6, 79.4, and 78.8, respectively. Figure 6 
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shows stereograms of the three 12- vertex 
polyhedra. 

For the icosahedron and the COH all 
edges are equivalent for all values of the 
exponent IZ. The edge lengths are 1.052 and 
1.000, respectively, for the icosahedron and 
COH inscribed in a unit sphere. The 6 angles 
are 41.8 and 54.7”. The TCOH is formed by 
combining half of a COH with its mirror 
image. The polyhedron thus obtained cor- 
responds to the packing of solid spheres: i.e., 
the n = oo case. If n is assigned a finite value 
four independent sets of edges are formed. 
Their lengths and S angles are given in Table 
VI, for n = 6. 

We must also establish a criterion for 
choosing the oxygen atoms surrounding a 
given oxygen atom which shall be considered 
as being part of the polyhedron to be 
analyzed, i.e., the near neighbors. We shall 
use the “differeiice in reciprocal distance 
concept” which has been suggested by 
Brunner (23). The rationale for the method 
in terms of Coulomb potential energy would 
seem to be as appropriate for repulsive 
potentials as for attractive potentials. A 
negative power of the interatomic distances 
greater than one would probably be more 
realistic and would provide sharper dis- 
crimination between those surrounding 
oxygen atoms which are or are not part of the 
appropriate polyhedron. We find in practice 
that the method as proposed by Brunner has 
the advantage that it is both adequate and 
easy to carry out. 

TABLE VI 

~ANGLESANDEDGELENGTHSFORTHE TCOH 

Edge 

(a) B5-B6rB7-BS,B~-B4n 
(b) All A-A 
(c) All A-B 
(4 Rr-B5r J&-B,, B&b 

a See Fig. 6c. 

6 (“I Edge lengths 

37.2 1.039 
54.2 1.006 
55.2 1.004 
71.6 0.960 

We now proceed to examine some 
representative structures using the proce- 
dures outlined above. The number of sur- 
rounding oxygen atoms belonging to the 
appropriate polyhedron were determined 
using the method of Brunner (23). The 
vertices of the polyhedron were moved along 
their radius vector to the surface of a unit 
sphere and the Porai-Koshits and Aslanov S 
angles were calculated. Spine1 (MgA1204) 
(3) was found to clearly contain 12-vertex 
polyhedra corresponding to the COH and 
the S angles range from 52.0 to 57.2”, in 
excellent agreement with the expected value. 
In BeA1204, which is representative of the 
olivine structure (3), there are three 
independent oxygen atoms, two of which are 
on mirror planes. All are surrounded by 12- 
vertex TCOH. There are therefore nine 
independent S, angles which range from 
36.2 to 40.4”. There are a total of 36 
independent & and 6, angles which range 
from 49.5 to 59.0”. There are a total of nine 
independent & angles which range from 67.0 
to 71.7”. The agreement with the expected 
values for hexagonal closest packed struc- 
tures is again excellent. 

The structure of Mg,.,As30i6 has four 
independent oxygen atoms in the space 
group R jrn (8). The oxygen atoms are all 
surrounded by COH with 6 angles ranging 
from 44.9 to 65.5”, which reflects the lower 
symmetry of the packing here compared to 
that in spine1 but the structure is correctly 
identified as cubic closest packed. 

C06.95As3.6~0~6 has three independent 
oxygen atoms in the space group Pnma. The 
polyhedron around each oxygen atom is a 
TCOH with S, between 32.4 and 43.4”, S,, 
and S, between 45.4 and 62.3”, and Sd 
between 62.8 and 71.7”. The distortions are 
larger than in olivine but the structure is 
based on the hexagonal closest packing of 
oxygen atoms. 

We now turn to the monoclinic and tetra- 
gonal polymorphs of Co3(As0&. Table VII 
which is available as supplementary 
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material’, lists the relevant O-O distances 
for each of the independent oxygen atoms. 
The values of (l/d,-I - l/d,,), multiplied by 
1000, are also given for each atom. 

Some unusually short O-O distances occur 
which correspond to edges of AsO tetra- 
hedra; and therefore some large values of the 
reciprocal function occur at low iz. Never- 
theless in all cases but one, a large increase in 
the value of 1000 (l/d,-* -l/d,) occurs at 
n = 9, 10, or 11. Even in the exception the 
maximum value of the function occurs at 
n = 11 although it is not distinctly larger than 
neighboring values. We find that all of the 
oxygen polyhedra in monoclinic Co3(As0& 
have 11 vertices and the three polyhedra in 
tetragonal Cog(AsO& have 10, 11, and 9 
vertices. Therefore neither is closest packed. 
The tetragonal form is, by inspection of the 
structure, clearly not closest packed. Based 
on the presence of roughly closest packed 
continuous planes of oxygen atoms, mono- 
clinic, Co3(As0& appears, by inspection, to 
be hexagonally closest packed. Nevertheless, 
the foregoing analysis would suggest that this 
is only a manifestation of the favorable rela- 
tion between the translational symmetry and 
the local packing in that the former pro- 
pagates the latter to give infinite planes of 
oxygen atoms which is a necessary but not 
then a sufficient condition for closest pack- 
ing. The presence of the cations, particularly 
the tetrahedrally coordinated cations, is 
sufficient to condense the structures in such a 
manner that the oxygen atom density is 
similar to that in closest packed structures. 

The question remains as to what kind of 
polyhedra are formed by the oxygen atoms 
surrounding each independent oxygen atom. 
In coordination polyhedra the force between 
the central atom and the vertices is attractive 
and between the vertices the force is repul- 
sive, thus limiting the number of ways that 
energy efficient polyhedra can be formed. 
Here the force between the vertices and the 
central atom is repulsive and furthermore it 
tends to be small in comparison with other 

forces which we have not considered. We 
should then expect less tendency toward 
regularity in the polyhedra examined here 
than in coordination polyhedra. 

This is indeed the situation we find in the 
polyhedra in the two polymorphs of 
Co3(As0&. Of the nine 11-vertex poly- 
hedra in the two polymorphs of Co3(As0&, 
four have the connectivity of the inter- 
mediate 11-vertex polyhedron given in Fig. 
5. These are the polyhedra around O(2) in 
tetragonal CO~(ASO~)~ and 0(14), 0(21), 
and 0(23) in monoclinic Co3(As0&. The 
four sets of & values are given in Table VIII. 
None of these four polyhedra approach the 
geometry of the DHH or the MPAP even 
though they have the appropriate connec- 
tivity. None of the nine 1 l-vertex Polyhedra 
have the connectivity of the PTP. The lo- 
vertex polyhedron around O(1) does not 
have the connectivity of the intermediate 
lo-vertex polyhedron. The 9-vertex poly- 
hedron around O(3) is the exception in that it 
is a distorted monocapped square antiprism 
with a S, of 12” (18). In order to investigate 
the structure of the monoclinic form of 
Cog(AsO&, further we added the 12th 
oxygen atom to each of the 11-vertex poly- 
hedra and again examined the polyhedral 
geometry. The connectivities of both the 
original polyhedra formed in this way, and 
the polyhedra formed by reducing the latter 
to the surface of a unit sphere were neither 
TCOH or COH. 

TABLE VIII 

8, ANGLES FOR POLYHEDRA IN THE Two 
POLYMORPHS OF Coj(AsO& WHICH HAVE 
THECONNECTIVITYOFTHEINTERMEDIATE 

ll-VERTEXPOLYHEDRON 

61 (") 

O(2) tetragonal) 10 52 
O(14) (monoclinic) 6 40 
O(21) (monoclinic) 3 42 
O(23) (monoclinic) 8 40 
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TABLE IX 

6 ANGLES FOR THREE DHH 

Edges Al(12)” Al(17) Th(NO& 3H20b CZ&L~NSOIIJ-~ 

a 
b and c 
d and e 
f andg 
h and i 
j 
k and I 
m 
n and o 

3 3 20 55 
52,61,71,13 51,70, IO, 74 44,63 40,42,43,46 
30,39, 50,63 18,40,52,68 39,50 33,36,39,41 

1,6,23,34 3,9,39,42 30,34 39,39,40,42 
39,78 41,80 57 69,74 
52,71 50,53 43 54,55 

23,36,45,54 15,34,38,41 15,50 19,25,28,29 
20,51 42,59 54 65,66 

42,69,70,16 39,68, II, 75 54,67 48,49, 51, 52 

a The numbering scheme is as in the original paper (24) 
’ The polyhedron has symmetry C2 (25). 

In order to determine if an oxide should be 
designated as closest packed we suggest then 
a rather simple procedure. It is first necessary 
to determine if each oxygen atom contains 12 
atoms in its surrounding sphere of oxygen 
atoms. Although more sophisticated proce- 
dures are available, the test used here seems 
both straightforward and adequate. Second, 
the degree to which those polyhedra 
approach either of the idealized TCOH or 
COH, as indicated by the 6 parameters, 
determines both the type of closest packing 
and serves as a qualitative measure of the 
extent to which closest packing is achieved. 
Analysis of the polyhedra with less than 12 
vertices is of less value in this regard but 
might in some cases shed light on the factors 
which influence the packing. 

We are not aware of the existence in the 
literature of an 1 l-vertex polyhedron which 
has the full C,, symmetry of the DHH. 
However, 11 vertex polyhedra do tend 
to have the connectivity of the DHH and 
two polyhedra in the (Y’ phase of the 
vanadium aluminium system (24) and the 
discreet polyhedron in Th(N03)4*3H20 
(25) are highly distorted DHH. Recently, 
however, Thomas ef al. (26) have found 

a discreet polyhedron in the struc- 
ture of trionitrato[2,6-diacetylpyridine- 
bis(benzoic acid [hydrazone)]lanthanum (III) 
(CZ3H2iN80i1La) which is a DHH with 6 
parameters similar to those of the polytopal 
DHH with IZ = 6 in the repulsion potential 
and which approaches the CZv symmetry of 
the DHH. The S angles of these polyhedra 
are given in Table IX. 

Spherical polar coordinates for the deca- 
hexahedron, monocapped pentagonal 
antiprism, pentacapped trigonal prism, 
icosahedron, cuboctahedron, and the twin- 
ned cuboctahedron, are available as 
supplementary material. 
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